
XXIII Generative Art Conference - GA2020

page 1

Lost Rituals: Generating Text Using Behavioral Data
Objects

B.T. Franklin, BACS

Dunesailer Research, Phoenix, AZ, USA
www.dunesailer.science

e-mail: brandon.franklin@gmail.com
__

ABSTRACT
Many systems have been created for the
purpose of generating interesting, novel,
entertaining, or insightful text. However, a
common shortcoming of these systems is
that they do not often include internal
structural context about the objects and
concepts being described by the
generated text, and therefore produce
spontaneous gibberish or nonsense, or
even simple grammatical errors. This
undermines the illusion that the text was

generated by a thinking individual and
exposes the fact that the output was
produced by an algorithm rather than a
mind. We describe the system
implemented to drive the “Lost Rituals”
application, which attempts to address
these shortcomings using a complex
framework of modeled objects. We
describe the implementation of narrator
backstory and voice selection as a
method for deepening user perception of
experiential validity and realism. We
explain the technique of using the
association of state, behavior, and
modification capabilities of represented
objects to the generated text as a path to
improving descriptive coherence and
avoiding or minimizing the loss of
suspended disbelief. Examples of
generated output are provided, along
with discussion for areas of future
improvement and exploration.

1 Introduction

Conceptually, the most common forms of
artistic outputs from procedural
generation systems can be broadly
categorized into visual art, musical art,
interactive experiences (such as games),
architecture, and language-based art
such as literature. This final type can be
seen through many lenses, with varying
levels of conceptual coherence and the

presence or absence of traditional
narrative structure. When narrative
structure is present, maintaining
coherence throughout the narrative is an
especially difficult challenge. Consider,
for example, that at the time of this
writing, there has never been a
convincingly human-competitive novel-

mailto:brandon.franklin@gmail.com

XXIII Generative Art Conference - GA2020

page 2

length narrative text story produced by a
procedural system.

The NaNoGenMo project, for example,
has, since 2013, encouraged participants
to write program code that generates a
50,000-word novel[1], and many entries
have been created since the project’s
inception[2], but none of these has ever
been a complete human-competitive
narrative. The majority of these novels
are created through what are often
creative and clever structural tricks, none
of which depend on narrative plot
advancement throughout.

We have endeavored to develop a
possible route to achieving the goal of
long-form generative text with a coherent
and unified narrative. “Behavioral data
objects” are programming structures that
combine state-related data and
evaluation logic with the generation of
specific textual segments that can be
used to describe the data, changes in its
state, and any associated actions that
might be appropriate to the generation
goal. It is our position that this strategy
has some unique advantages over the
most common existing strategies.

2 Common Existing Strategies
There are three primary strategies that
appear dominant in the world of
procedural text generation: context-free
transformation grammars, Markov
chains, and neural or deep learning
techniques. While each of these
approaches can sometimes produce
impressive results, each has a tendency
to produce output that is revealed to be
essentially gibberish upon close reading.
The reasons for this vary based upon the
system being used.

2.1 Context-Free Transformation
Grammars

Context-free transformation grammars
rely on a repeating loop of replacements,
where symbols are replaced with other
symbols, typically drawn from a collection
of available options[3]. A very popular
system based on this approach is
Compton’s Tracery[4], which has been
ported to many programming languages.
Context-free grammars suffer from
exactly what their name implies: they do
not contain context. This makes the
production of coherent narrative events
especially difficult. Short, standalone
snippets of text can be generated easily,
and are generally syntactically correct,
but the transmission of state and
meaning from artifact to artifact is often
lost. Tracery attempts to overcome this
challenge, at least in part, via the use of
ad hoc variables, allowing already-
selected replacement symbols to be
consistently re-used in later text.
However, what this solution lacks is
transmission of state and metadata,
since the generated symbol is stored and
represented only in its textual form.
There is no underlying justification for the
selection of any given symbol, and
therefore no such data to be conveyed to
later pieces of the generation process to
maintain context.

2.1.1 Example Output
The following are some examples of
generated text using a context-free
transformation grammar.[5]

An owl is almost always wistful, unless it
is a grey one.

A duck is often indignant, unless it is a
purple one.

A unicorn is rarely wistful, unless it is a
green one.

XXIII Generative Art Conference - GA2020

page 3

An eagle is sometimes vexed, unless it is
a grey one.

2.2 Markov Chains
Markov chains are state machines whose
state transitions are controlled by
stochastic probabilities.[6] In the realm of
text generation, a Markov chain is
typically configured such that a given
state produces a specific word or
character as output, and then transitions
to another state, whose output is
appended onto the text, continuing until
some termination state is achieved. The
construction of the chain’s configuration
can be done either manually or (more
commonly) through training on a corpus
of existing text. The probabilities of
transitioning from any state to any
subsequent state are modeled upon the
probabilities detected in the corpus.
When training has been completed, the
chain can be used to very quickly
produce text output that resembles the
corpus in the sense that it will reflect
approximately the same state transition
probabilities. While this approach is able
to mirror the “feel” of the input corpus, the
transition from state to state generally
does not convey any contextual
information, since each state is arrived at
purely through a probability based on the
starting state. Even if such contextual
information were transmitted across
states, it would be nearly impossible to
use the contextual information in a
meaningful way, since the training of the
chain cannot reasonably take context
information into consideration when
analyzing probabilities. The end result of
this is that Markov chains tend to
produce output text that meanders
through linguistic non-sequiturs, following
the most superficial transitional structures
of the corpus, but completely failing to
replicate the relationship to any
underlying information being described. It

is, put simply, just a bunch of words
strung together.

2.2.1 Example Output
The following are some examples of
generated text using a Markov chain.[7]

'I am a master armorer , lords of
Westeros , sawing out each bay and
peninsula until the'

'Jon Snow is with the Hound in the
woods . He won’t do it . " Please don’t'

'Where are the chains , and the Knight of
Flowers to treat with you , Imp . "'

'He thought that would be good or bad for
their escape . If they can truly give us'

'I thought that she was like to remember
a young crow he’d met briefly years
before . “'

2.3 Neural and Deep Learning
Techniques
The use of neural-network driven, or
more precisely “deep learning,”
techniques is one of the more promising
and modern approaches being used for
generative text production at the time of
writing, and there has been a fair amount
of success at producing high-quality
results using these techniques[8]. The
use of deep learning allows for the
generative system to be trained against a
truly massive corpus of example texts,
and to identify complex and multi-faceted
structures within the corpus that can be
used when generating output. However,
while the generated text is certainly able
to produce what appears at first glance to
be very convincing language, deeper
reading will often reveal that the text is
actually meaningless, often self-
contradictory, and incoherent. As with the
previous strategies, the underlying

XXIII Generative Art Conference - GA2020

page 4

reason for this shortcoming is that while
the structure and appearance of the
language is being learned, the meaning
behind it is not. The generator is
producing output without any actual
conceptual thread holding it together. It
is, at the bottom, simply producing a very
opaque simulacrum of a coherent
linguistic structure, complex enough to
not reveal itself immediately, but breaking
down entirely upon careful reading.

2.3.1 Example Output
The following text was generated using a
deep-learning engine.[9]

QUEENE:

I had thought thou hadst a Roman; for
the oracle,

Thus by All bids the man against the
word,

Which are so weak of care, by old care
done;

Your children were in your holy love,

And the precipitation through the
bleeding throne.

BISHOP OF ELY:

Marry, and will, my lord, to weep in such
a one were prettiest;

Yet now I was adopted heir

Of the world's lamentable day,

To watch the next way with his father
with his face?

3 Lost Rituals Application
Description

As a vehicle for the implementation of our
generation strategy, we created an
application called Lost Rituals. The

application presents an interactive
experience through which the user is
introduced to a narrator, and then reads
along through a book of fictional rituals in
a fantastic world. The rituals are
generated as the user turns the pages of
the book.

There are two primary forms of text
generation used in Lost Rituals:
generation of the narrator’s backstory,
and generation of individual rituals.

In order for the generated rituals to be
coherent from beginning to end, the
generator required the ability to manage
contextual state. This prevents the
generation of nonsensical, impossible, or
implausible actions as part of the
generated rituals, and allows for a
deeper connection between individual
elements.

3.1 Platform Details

Lost Rituals is implemented in the
programming language Swift 5.3. It runs
on the iOS platform, specifically intended
for iPhone devices.

All speech output generation is
accomplished through the use of iOS’s
built-in text-to-speech capabilities. The
voices available for selection are
dependent upon the voices that have
been installed by the user on their
device, or the default set if no additional
ones have been manually installed.

The application is bundled with a variant
that is specialized for use over the
Messages instant messaging system
included on iOS. This variant allows two
human participants to take turns building
up a ritual step-by-step as an interactive
activity, unlike the primary application
mode in which an entire ritual is
generated at once.

XXIII Generative Art Conference - GA2020

page 5

3.2 Narrator Generation
When the user begins to use the
application, he or she is first presented
with an introduction by a fictional
narrator. Along with the textual
introduction, the narrator introduces
himself or herself using text-to-speech
audio output. The voice of the narrator is
selected as part of the generation
process, and thus is related to the
“character” of the narrator. The user can
choose to generate a new narrator as
many times as necessary to allow the
selection of an acceptable voice for the
reading of the rituals. Once a narrator is
selected, the user simply presses a
button to begin, and the first ritual is
generated, presented visually, and read
aloud.

The generation of the narrator’s
introduction is one of the simpler
elements of the application, but it
immediately reveals a crucial aspect of
the value of using behavioral objects: the
gender of the narrator is contextual data.
The narrator is introduced by name, and
the name is gender-associated. The
voices provided by the built-in text-to-
speech framework in iOS are also
gender-associated. By maintaining the
gender as a piece of metadata when the
narrator’s name is selected, it is simple to
select a voice that matches the gender.
This is a rather uncommon feature in
generative text systems, since most of
them do not exist in the context of a
complete, standalone runtime application
that uses a selectable voice to read the
output. In the case of Lost Rituals, this
feature helps bring the user’s perception
more “into the world” of fantasy, and
deepens immersion.

Beyond voice selection, maintaining the
underlying data of the narrator’s identity
allows more descriptive elements to be
added, such as “Sir” versus “Lady” as a
name prefix to indicate nobility.

In practice, the generation process for
the narrator’s introduction is the
following:

1. Create an instance of a
NarratorIntroduction data structure

2. Creation of the NarratorIntroduction
causes creation of an instance of a
Narrator class object

3. Creation of the Narrator class object
creates a singleton instance,
populated with gender, name,
institution, and other data

4. The NarratorIntroduction data
structure interrogates the Narrator
object instance for relevant
information, and incorporates it into
generated output text

3.2.1 Code Representation

The following is a truncated version of
the code representation of the narrator.
class Narrator {
 let speechSynthesizer =
AVSpeechSynthesizer()
 let gender: Gender
 let title: String?
 let institution: Institution?
 let givenName:
CommonPersonGivenName
 let surname: CommonPersonSurname
 let voice:
AVSpeechSynthesisVoice?

 private init() {
 gender = Bool.random() ? .male
: .female

 switch Int.random(in: 0...2) {
 case 0:
 institution = School()
 case 1:
 institution = Institute()
 default:
 institution = Church()
 }

XXIII Generative Art Conference - GA2020

page 6

This is only a small portion of the code
used in the initialization of the Narrator,
but serves to illustrate the richness that is
available through such an approach; the
Narrator exists as a collection of defined
facts and attributes rather than simply as
a name. These facts and attributes can
be related to one another using any
programming logic desired, and can be
passed along during the generation
process as part of a rich context
definition.

3.2.2 Example Output
The following are example outputs from
the narrator introduction process in Lost
Rituals.

Pleased to meet you! I am Dr. Malaya
Mahoney, from Nymoxorr University of
Parapsychology.

The University recently acquired this
grimoire via an anonymous donation. It
was immediately obvious that it
contained the details of the most
noteworthy rituals from all corners of the
world. I have brought it for you to peruse.

Are you ready to start?

—-

I'm Acolyte Miracle Crosby, from the
Sacred Orthodoxy of Undying Devotion.
Hello!

To better understand the heathen mind,
the Orthodoxy has built a library of the
details of the most noteworthy
ceremonies from around the world,
logging the discoveries in this aged tome,
called the Tome of Zemu. I am pleased
to present it to you.

Shall we explore?

3.3 Ritual Generation
The process of ritual generation in Lost
Rituals is built upon the same behavioral
object strategy as used in the narrator
introduction generation. The rituals
contain many more data elements than
the introduction, however, and therefore
are constructed using a much larger
number of branching behaviors and
conditional data structures.

In the Swift programming language, any
data structure can publish its own textual
representation on demand. This
“description” facility is leveraged very
heavily by Lost Rituals to produce text
output.

Each concept to be represented in the
text is placed through the instantiation of
the highest-level concept, such as
“Ritual”. The process of instantiating this
data object, contained within the
initialization method of each object, not
only establishes state information for the
data object itself, but also evaluates
various stochastic conditions and uses
the results of that evaluation to
instantiate smaller concepts that fall
within the larger one. For example, a
“Ritual” has a “RitualIntroduction” and a
“Procedure”. The initialization of the
Ritual itself is not completed in memory
until all of the contained dependency
concepts have themselves been fully
initialized, and their own contained
concepts initialized, and so on.
Functionally, this means that an entire
tree of established facts is created in
memory before any text is generated.

A novel aspect of this strategy is that by
utilizing a hierarchical instantiation
pattern, a reference-based Context
object can be passed along to any
contained object to guide and participate
in its instantiation, and perhaps even
have additional information added to it.
This is a powerful approach for allowing
context to travel between artifacts, and

XXIII Generative Art Conference - GA2020

page 7

opens an avenue to address some of the
shortcomings of the approaches
described earlier.

Additionally, scoped parameters can be
provided alongside the common
contextual information, based on specific
demands and requirements of the
contained data object. For example, the
“DomesticAnimal” structure allows the
specification of whether or not adjectives
will be associated with it. This allows
code to make use of the concept of either
“a pig” or “a well-fed pig”. The animal
object is responsible for understanding its
own attributes (such as, in this example,
that the pig is well-fed) but it is not
necessary to generate additional facts in
cases where they are known to be
irrelevant, especially since the ultimate
depth of the additional fact tree cannot
be known by the containing data object.

The following simplified code snippet
illustrates how the instantiation process
works, specifically for a “Bottle” object
possibly used in a ritual.
struct Bottle: OfferableThing, UsableThing
{

 let name: String
 let article: String
 let adjective: String?
 let material: Material
 let methodOfOffering: String
 let methodOfUse: String

 init(singular: Bool = true) {
 adjective =
Bottle.adjectives.keys.map({ $0
}).randomElement()!

 if singular {
 name = "bottle"
 article =
Bottle.adjectives[adjective!]!
 } else {
 name = "bottles"
 article = ""
 }

 material = Crystal()

 var methodOfUse: String

 if Bool.random(probability: 75) {
 let filled =
Bowl.filledWords.randomElement()!
 let contents: String

 switch Int.random(in: 0...100) {
 case 0...33 :
 contents =
Bowl.nonFoodContents.randomElement()!
 case 34...66:
 contents = Ingredient().name
 default:
 let beverage = Beverage()
 if let adjective =
beverage.adjective {
 contents = "\(adjective)
\(beverage.name)"
 } else {
 contents = beverage.name
 }
 }

 methodOfUse = "\(filled) with
\(contents)"

 switch Int.random(in: 0...100) {
 case 0...25:
 let verb = singular ? "is" :
"are"
 methodOfUse += ", which \(verb)
then
\(Ingredient.offeringActions.randomElement(
)!)
\(Ingredient.offeringLocations.randomElemen
t()!)"
 case 26...50:
 methodOfUse += ", then
\(Bottle.putSomewhereSpecial.randomElement(
)!)"
 default:
 break
 }

 } else {
 methodOfUse = "filled with
\(Bottle.specialItems.randomElement()!)"

 if Bool.random() {
 if Bool.random() {
 methodOfUse += ", sealed"
 }
 methodOfUse += ", then
\(Bottle.putSomewhereSpecial.randomElement(
)!)"

 } else {
 if Bool.random() {
 methodOfUse += " and sealed"
 }
 }
 }

 self.methodOfUse = methodOfUse

 methodOfOffering =
material.methodOfOffering
 }
}
This snippet illustrates several of the key
concepts: local state management,
contained objects, initialization-time
parameterization, custom branching logic
and behaviors based on the represented

XXIII Generative Art Conference - GA2020

page 8

object, and inline text generation through
string interpolation.

Once the tree of facts and structures has
been established, the process of
generating the output text itself is simple
and highly performant. The program
utilizes the on-demand string
interpolation capabilities of Swift to
generate a consolidated output of the
entire data tree. Because this final step
does not need to consider contextual
state information (since that is owned by
the behavioral objects being rendered as
text), this provides an opportunity point to
add decorative textual variation that is
not part of the state tree’s own
representation. For example, in rendering
the text for a single “ProcedureStep” in a
ritual, the text conversion process can
stochastically select from a variety of
different introductory phrases, as
illustrated in the following code snippet.
switch Int.random(in: 0...100) {
 case 0...15:
 str = "Next, "
 case 16...30:
 str = "After that, "
 case 31...45:
 str = "Following that, "
 case 46...60:
 str = "When that has been
completed, "
 case 61...75:
 str = "When that is done, "
 default:
 // Do nothing
 break
}

The exact phrase selected has no
bearing on the state of the represented
facts, which is why it can appropriately be
selected at render time.

3.3.1 Example Output
The following are example outputs from
the ritual generation process in Lost
Rituals.

Just before the death of a female
member of the community in the
dangerous province known as eastern
Ky, the most distinguished community
members use a ritual practice to mourn
and to release the soul into the afterlife.

The ritual requires the following four
elements, which may be executed in any
order.

To begin, a large cut of pig meat is
burned.

When that has been completed, the
participants chant while clad in blessed
shawls and holding very fine bottles.

When that has been completed, one
participant speaks the text of a sacred
poem while garbed in a blessed robe and
carrying a wand.

Finally, the participants, while attired in
embroidered magenta silk shawls, chant.

—

The most respected citizens of Vady, just
after the passing of an adult, have a
sacred rite in order to express their
sadness and to ask that the goddess
called Casupac take pity on the soul in
the netherworld.

The ritual is comprised of the following
three steps.

While garbed in a blessed coat, a
selected individual chants.

Following that, a spiced dish of sheep
meat is burned.

Finally, a bowl is filled with cold white
wine, which is then poured on the
ground.

—

Prior to the first rain of the year in the
lush forests called Lower Medohu, the
female shamans have a sacred rite to
ensure a thriving economy and to request

XXIII Generative Art Conference - GA2020

page 9

the favor of the beloved goddess called
Fiquad.

First, a single person dances towards a
platform, upon which is placed a wand,
while grasping a chalice.

Following that, a crystalline bowl is
partially filled with wheat, which is then
scattered under a tree.

When that has been completed, the
participants speak the text of a sacred
poem while holding fetishes depicting the
mostly unknown demon known as
Geposa.

When that is done, the participants in the
ritual, while attired in blessed stoles,
speak the text of a sacred poem.

Finally, a specially-prepared fig is
burned.

4 Conclusions and Future Work
The use of behavior data objects for text
generation certainly made the production
of the Lost Rituals application easier, in
the sense that it enabled the generation
of coherent ritual description text that is
internally coherent. The approach also
shows promise in other projects,
especially those that generate short-form
coherent passages that address specific,
focused subject matter with particular
attributes that must vary in description
along with the selected detail variants.

Future work includes increasing the
amount of contextual information that is
used during the creation of the ritual tree.
For example, even though the context
object already contains information about
the purpose of the ritual, this is not
currently used for anything during the
generation process. It would be
interesting to describe how individual
steps in the rituals are intended to relate
to the overarching goal of the ritual itself.
It would also be interesting to have some

of the individual procedural steps build
upon the actions of the step immediately
preceding them, to create more of a
sense of “flow” from step to step.

Finally, this approach shows promise in
the goal of creating long-form textual
stories. We have not done any
substantial work in this area, but the
advantages of the strategies described
herein offer potential benefits, and these
bear investigation.

5 References
[1] NaNoGenMo. Github.io. Retrieved
20:15, November 8, 2020, from
https://nanogenmo.github.io
[2] Why I love National Novel Generation
Month. Medium.com. Retrieved 21:05,
November 8, 2020, from
https://medium.com/@liza/why-i-love-
national-novel-generation-month-
b8f6e58c6422
[3] Context-free grammar. Wikipedia.org.
Retrieved 16:04, November 8, 2020, from
https://en.wikipedia.org/wiki/Context-
free_grammar
[4] K Compton, B Kybartas, M Mateas,
“Tracery: an author-focused generative
text tool”, Springer, Cham, International
Conference on Interactive Digital
Storytelling, 2015
[5] Tracery Writer. Beaugunderson.org.
Retrieved 16:05, November 8, 2020, from
https://beaugunderson.com/tracery-
writer/
[6] Markov Chains. Brilliant.org.
Retrieved 16:07, November 8, 2020, from
https://brilliant.org/wiki/markov-chains/
[7] Markov Chains: How to Train Text
Generation to Write Like George R. R.
Martin. Kdnuggets.com. Retrieved 16:09,
November 8, 2020, from
https://www.kdnuggets.com/2019/11/mar
kov-chains-train-text-generation.html
[8] Ziang Xie, “Neural Text Generation: A
Practical Guide”, Stanford, web, 2017
[9] Text generation with an RNN.

XXIII Generative Art Conference - GA2020

page 10

Tensorflow.org. Retrieved 16:12,
November 8, 2020, from
https://www.tensorflow.org/tutorials/text/te
xt_generation

	ABSTRACT
	1 Introduction
	2 Common Existing Strategies
	2.1 Context-Free Transformation Grammars
	2.1.1 Example Output
	2.2 Markov Chains
	2.2.1 Example Output
	2.3 Neural and Deep Learning Techniques
	2.3.1 Example Output
	3 Lost Rituals Application Description
	3.1 Platform Details
	3.2 Narrator Generation
	3.2.1 Code Representation
	3.2.2 Example Output
	3.3 Ritual Generation
	3.3.1 Example Output
	4 Conclusions and Future Work

